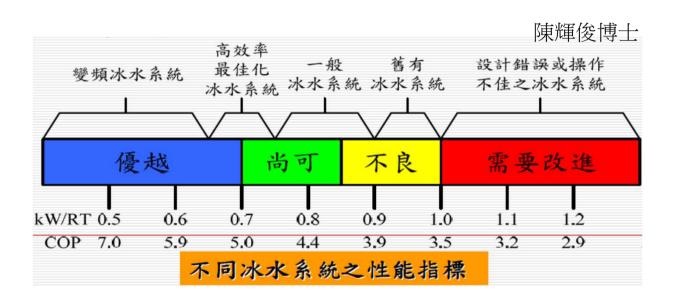
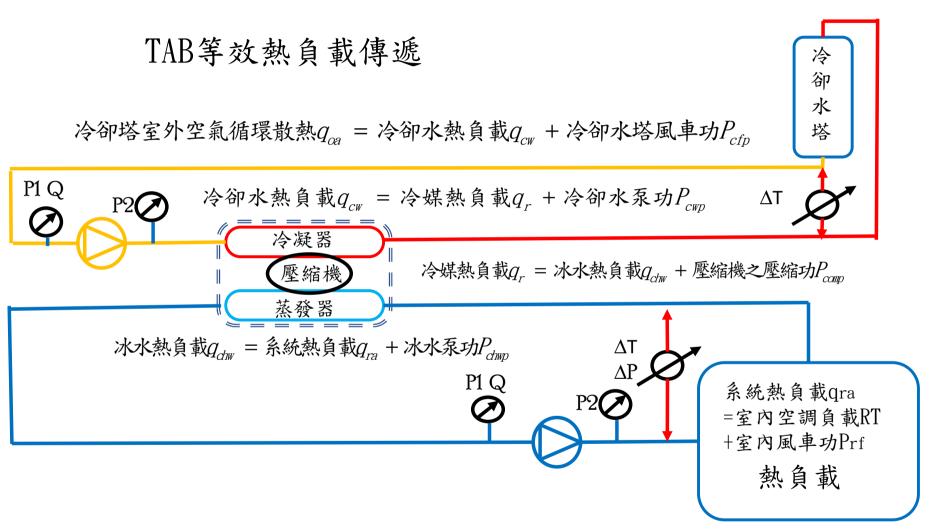
管路阻抗曲線的應用Ⅱ-空調水側系統IPLV能效評估 (課程時數:6小時,含CMVP的方法) 設備冷卻單迴路


> 編輯:簡煥然 煜然有限公司

節能量測:陳建龍CMVP 殷聖節能泵浦有限公司 2022-12-09

簡煥然 老師


- 現職: 煜然有限公司總經理 產品開發、專利佈局、市場行銷、經營管理 泵浦公司專業顧問,產品發明專利
- 經歷

- 節能領域: 空調水側系統節能,Ashrae90.1標準 高能效離心泵浦 高能效永磁馬達

實測案例

- a. 水測系統:設備冷卻用冰水系統,單一迴路,冷卻水泵配一個冷卻塔。
- b. 變頻系統:在部分負載時,流量正比於冰機負載容量,泵浦轉速也隨阻抗曲線移動。
- C. 現場量測:以超音波流量計與複數個差壓計進行量測。
- d. 量測時間: 2021年8月。
- e. 量測地點:台灣南部XXX電子廠。
- f. 執行者: 殷聖節能泵浦,陳建龍協理(CMVP量測驗證師)

0. 前言與基礎數據

本分講義的目標在有CMVP專業人士進行量測下,以利用管路阻抗曲線進行空調水側系統IPLV的能效計算,本份講義的內容有:

- a. 水側系統各項耗電與冷凍能力的量測數據,泵浦出入口壓力,蒸發器與冷凝器出入口溫度。
- b. 水量係以冰水幹管與冷卻水幹管的流量量測。
- c. 計算冰水幹管之管路系統阻抗曲線,計算冷卻幹管之管路系統阻抗曲線。
- d. 計算100%、75%、50%、25%負載時的流量揚程。
- e. 計算IPLV部分負載時冰機能效、泵浦能效、冷卻塔能效。

0.1. 冷凍能力計算公式

定壓比熱容Cp(Specific Heat Capacity):是單位品質的物質在壓力不變的條件下,溫度升高或下降 1° C或1K所吸收或放出的能量。以水為例,一千克(kg)重的水需要4184焦耳(J)來加熱一開爾文(K)。根據比熱容,便可得出:

$$C_P = \frac{H(J)}{m(kg) \Delta T(^{\circ}K)} = 4.184kJ/(kg ^{\circ}K)$$

$$q(kW) = m(kg / \sec) C_n(kJ/(kg \circ K)) \Delta T(\circ K)$$

$$q(kW) = \rho(kg / m^3) \ Q(m^3 / \sec) \ C_p(kJ / (kg \circ K)) \ \Delta T(\circ K)$$

0.2. 冷凍噸單位換算

冷凍噸簡稱RT(Refrigeration Ton) 定義為在攝氏零度下將一短噸 (2,000) 磅)的冰熔化24小時的需求熔化熱。一冷凍噸約等於(2,000) BTU/h=(2,000) 卡/h=(3,516) kW。

公制冷凍頓,約等於3320 Kcal/hr,相當於1.1冷凍頓。 臺灣家電業常用的所謂"台制冷凍頓"則是8,000 BTU/h(2000千卡/h)。 以熱力學及化學使用的「熱化學卡路里」而言,1卡路里(cal)=4.184焦耳(J) 冷房能力的單位為 kW 或 kcal/h

$$1kcal / h = \frac{1000cal \times (4.184J / cal)}{1h \times (3600s / h)} = 1.1622J / s = 1.1622W$$

$$1W = \frac{1kcal/h}{1.1622} = 0.8604kcal/h$$

冷氣能力用kW表示,1kW = 860kca1 / h,而1 kca1約等於4 Btu公制1R.T.=1.1美制 = 3320kca1 / h=13174.8Btu=3861W = 3.861kW 美制1R.T.=12000Btu / h=3024kca1 / h=3516W = 3.516kW 台制1R.T.=0.66公制R.T.=1992kca1 / $h\approx2000kca1$ / $h\approx8000Btu$ / h

0.3. 冰水主機設計規格

蒸發器出水溫度: 7℃

蒸發器入水溫度: 12℃

蒸發器入出水溫差:5℃

冷凝器出水温度: 35℃

冷凝器入水温度: 30℃

冷凝器入出水溫差:5℃

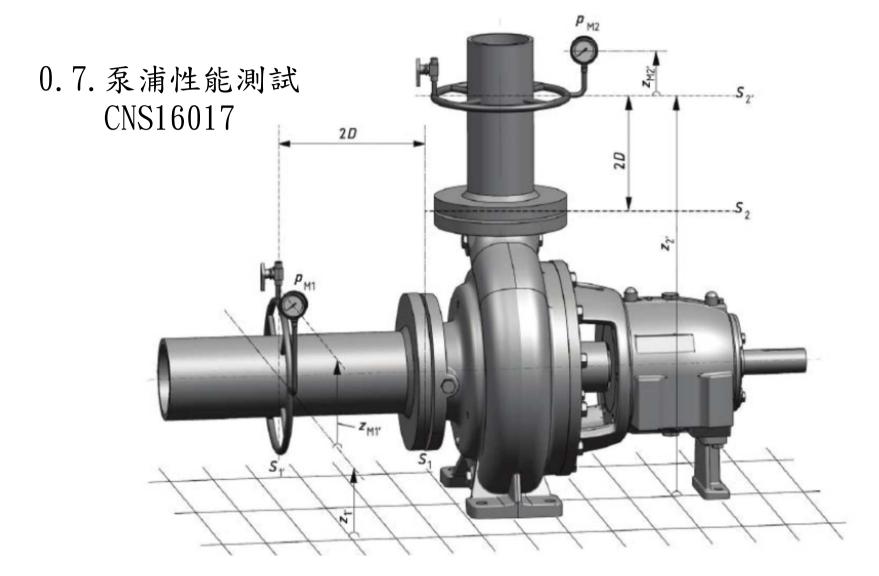
冰水循環量: 10*Lpm / RT*

冷卻水循環量: 12.5Lpm / RT

0.4. 請廠商提供冰機的測試報告

Output Type	Full Load	Part Load	Part Load	Part Load	
Percent Load	100.00	75.00	50.00	25.00	
Chiller Capacity	550 Tons	413 Tons	275 Tons	138 Tons	
Chiller Input kW	312 kW	166 kW	78 kW	41 kW	
Chiller Input Power	0.566 kW/Ton	0.402 kW/Ton		0.298 kW/Ton	
Chiller COP	6.2	8.7	12.4	11.8	
NPLV	0.328 kW/Ton	N/A	N/A	N/A	
Cooler					
Entering Temp.	12.00 C	10.74 C	9.50 C	8.25 C	
Leaving Temp.	7.00 C	7.00 C	7.00 C	7.00 C	
Flow Rate	1465.0 gpm	1465.0 gpm	1465.0 gpm	1465.0 gpm	
Pressure Drop	55.9 kPa	56.1 kPa	56.3 kPa	56.5 kPa	
Condenser					
Leaving Temp.	34.67 C	27.20 C	20.35 C	19.34 C	
Entering Temp.	30.00 C	24.17 C	18.33 C	18.33 C	
Flow Rate	1815.0 gpm	1815.0 gpm	1815.0 gpm	1815.0 gpm	
Pressure Drop	49.8 kPa	51.1 kPa	52.5 kPa	52.6 kPa	

0.5. 計算泵浦歐盟能效,COMMISSION REGULATION (EU) No 547/2012。


比速率
$$NS = \frac{rpm \times \sqrt{Q}}{H^{0.75}}$$
, $Q(cms)_{\text{w}}$, $Q(cmm)_{\text{B}}$, $H(m)$

$$\eta_{pump,BEP} = 88.59X + 13.46Y - 11.48X^2 - 0.85Y^2 - 0.38XY - C$$
 $X = \ln(Ns)$, $Y = \ln(Q_{100\%})$, $Ns \rightarrow Q(cms)$, $Q_{100\%} \rightarrow Q(cmh)$
End suction own bearing (ESOB)連軸式泵浦
End suction close coupled (ESCC)直結式泵浦
End suction close coupled inline (ESCCi)管道泵
Vertical multistage (MS - V)立式多級泵
Submersible multistage (MSS)沉水多級泵
Part Load(PL)-75% of the flow at BEP, $(\eta_{PL})_{\min,requ} = 0.947$ $(\eta_{BEP})_{\min,requ}$
Over Load(PL)-110% of the flow at BEP, $(\eta_{QL})_{\min,requ} = 0.985$ $(\eta_{REP})_{\min,requ}$

能效標準MEI=0.4						
泵型式	轉速rpm	С				
FCUD:申 まr ナ	1450	128.07				
ESOB連軸式	2900	130. 27				
FCCC 去 41 十	1450	128. 46				
ESCC直結式	2900	130.77				
FCCCI	1450	132.30				
ESCCI管道泵	2900	133.69				
MS-V立式多級	2900	133. 95				
MSS沉水多級	2900	128. 79				

0.6. 低壓三相鼠 籠感應電動機IE3 能源效率基準

額定輸出功率		2 極		4 極		6極					
		同步 轉速 (rpm)	l .	滿載 η(%)	同步 轉速 (rpm)		满载 η(%)	同步 轉速 (rpm)		滿載 η(%)	
kW	HP (參考值)	60Hz	全閉型	保護型	60Hz	全閉型	保護型	60Hz	全閉型	保護型	實施日期
0.75	1		77.0	77.0		85.5	85.5		82.5	82.5	
1.1	1.5		84.0	84.0		86.5	86.5		87.5	86.5	
1.5	2		85.5	85.5		86.5	86.5		88.5	87.5	
2.2	3		86.5	85.5		89.5	89.5	89.5 91.0 91.0	89.5	88.5	
3.7	5		88.5	86.5		89.5	89.5		89.5	89.5	
5.5	7.5		89.5	88.5		91.7	91.0		91.0	90.2	
7.5	10		90.2	89.5		91.7	91.7		91.0	91.7	
11	15		91.0	90.2		92.4	93.0		91.7	91.7	
15	20		91.0	91.0	1800	93.0	93.0	91.7 93.0 93.0 94.1 94.1 94.5 94.5 95.0		92.4	自一百零 五年七月 一日起
18.5	25	3600	91.7	91.7		93.6	93.6			93.0	
22	30	2000	91.7	91.7	1000	93.6	94,1			93.6	
30	40		92.4	92.4		94.1	94.1			94.1	
37	50		93.0	93.0		94.5	94.5			94.1	
45	60		93.6	93.6		95.0	95.0			94.5	
55	75		93.6	93.6		95.4	95.0			94.5	
75	100		94.1	93.6		95.4	95.4			95.0	
90	125		95.0	94.1		95.4	95.4		95.0	95.0	
110	150		95.0	94.1		95.8	95.8		95.8	95.4	
150	200		95.4	95.0	[96.2	95.8		95.8	95.4	
185200	250270		95.8	95.4		96.2	96.0		95.8	95.8	

FB泵浦教室 Line 泵浦教室 <u>huanjan.chien@gmail.com</u> 15

CNS16017 迴轉動力泵液壓性能允收試驗-1級、2級及3級

3.2.12 總揚程 任一截面之總能量 總揚程由下式表示

$$H_{X} = Z_{X} + \frac{P_{X}}{\rho g} + \frac{U_{X}^{2}}{2g}$$

Z: 横截面中心在參考面的高度

P: 所述橫截面中心的錶壓

3.2.13 入口總揚程

泵入口截面處的總能量

入口總揚程由下式表示

$$H_1 = Z_1 + \frac{P_1}{\rho g} + \frac{U_1^2}{2g}$$

3.2.14 出口總揚程 泵出口截面處的總能量 出口總揚程由下式表示

$$H_2 = Z_2 + \frac{P_2}{\rho g} + \frac{U_2^2}{2g}$$

3.2.15 泵總揚程

出口總揚程用。與入口總揚程用之代數差 總揚程由下式表示

$$H = z_2 - z_1 + \frac{P_2 - P_1}{\rho g} + \frac{U_2^2 - U_1^2}{2g}$$

CNS16017-A. 2節 量測原理的補充說明

3.2.7 小節

揚程定義中,規定的各種輛應在泵的入口節面S1的上游及 S_2 的下游,一小段距離的 S_1 截面及 S_2 截面處進行量測,參 照圖。因此應該考慮期間的管路摩擦損失,亦即S1與S2之 間H12及可能之局部揚程損失,亦即S1與S1´之間的H11及面S2 與S2´之間的HJ2,而泵總揚程由下式計算之。

$$\begin{split} H &= H_{2'} - H_{1'} + H_{J1} + H_{J2} \\ \mbox{式中,} H_{1'} \mathcal{A} H_{2'} & \mbox{為} S_{1'} \mathcal{A} S_{2'} \\ \mbox{處的總揚程} \\ Z_1 &= Z_{1'} + Z_{m1'} \qquad Z_2 = Z_{2'} + Z_{m2'} \\ H &= Z_{2'} - Z_{1'} + Z_{m2'} - Z_{m1'} + \frac{P_{m2'} - P_{m1'}}{\rho \ g} + \frac{U_{2'}^2 - U_{1'}^2}{2g} + H_{J2} + H_{J1} \end{split}$$

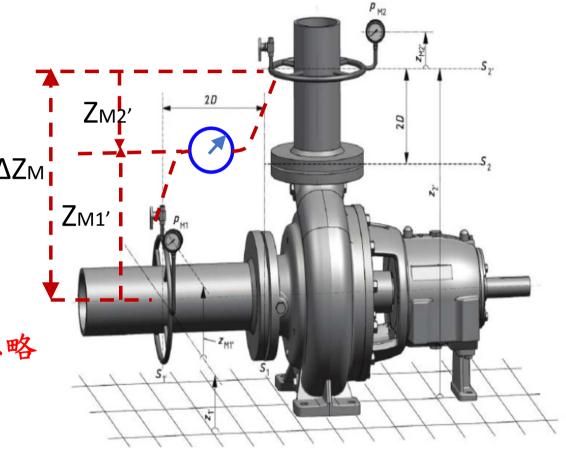
差壓計量測

$$Z_{1} = Z_{1'} + Z_{m1'}$$

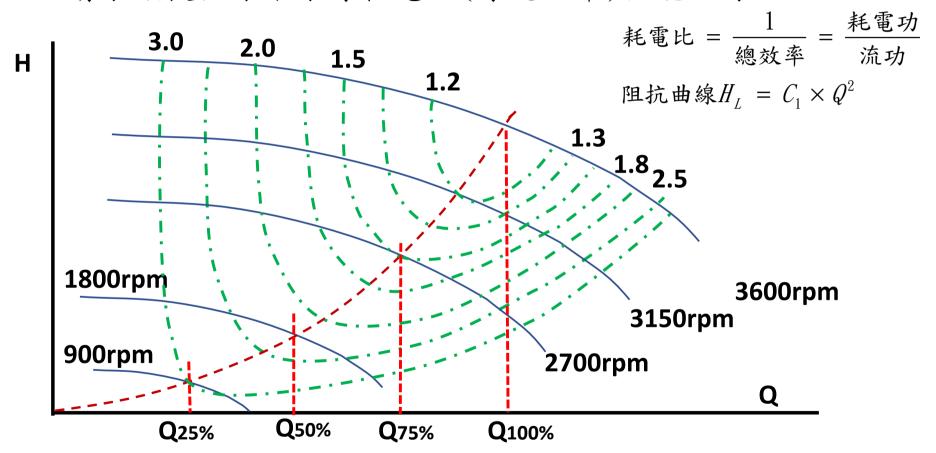
$$Z_{2} = Z_{2'} - Z_{m2'}$$

$$\Delta Z_{m} = Z_{2'} - Z_{1'} = Z_{m2'} + Z_{m1'}$$

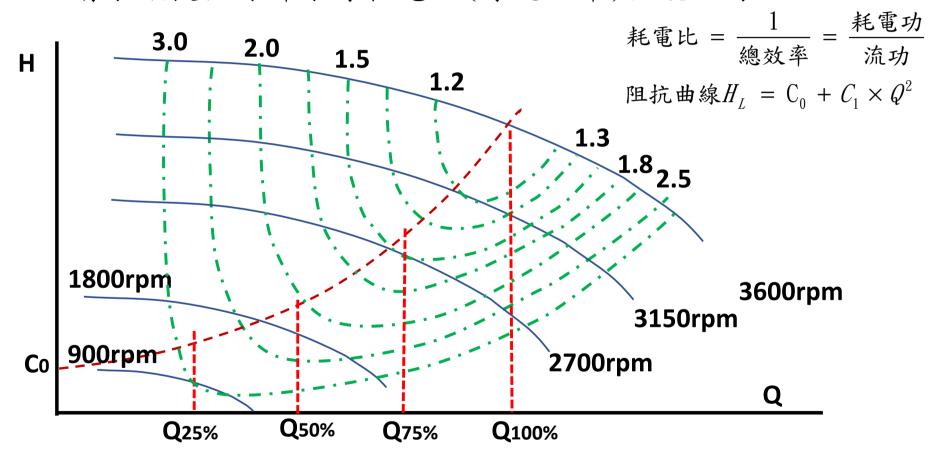
$$\Delta Z = (Z_{2'} - Z_{m2'}) - (Z_{1'} + Z_{m1'}) \qquad \Delta Z_{N}$$


$$= (Z_{2'} - Z_{1'}) - (Z_{m1'} + Z_{m2'})$$

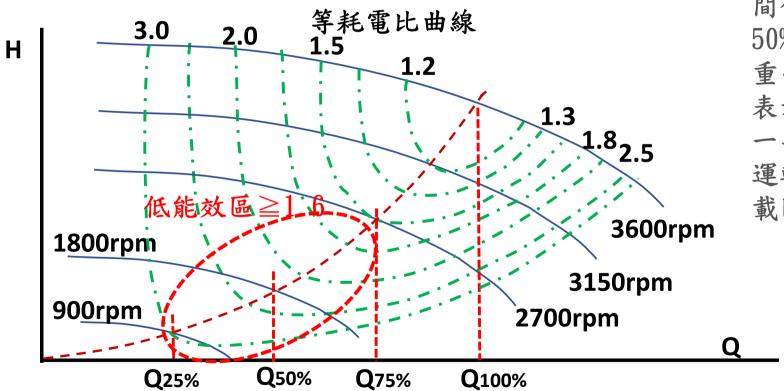
$$\Delta Z = \Delta Z_{m} - \Delta Z_{m} = 0$$


$$H = Z_{2'} - Z_{1'} - (Z_{m2'} + Z_{m1'}) + \frac{P_{m2'} - P_{m1'}}{\rho g}$$

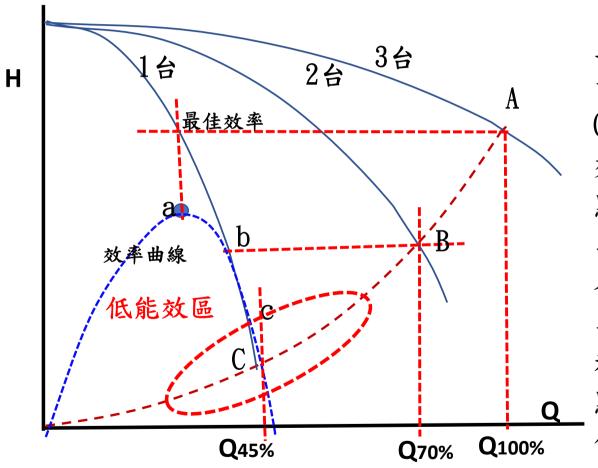
$$+ \frac{U_{2'}^{2} - U_{1'}^{2}}{2g} + (H_{J2} + H_{J1})$$


$$H = \frac{P_{m2'} - P_{m1'}}{\rho g} + \frac{U_{2'}^{2} - U_{1'}^{2}}{2g}$$

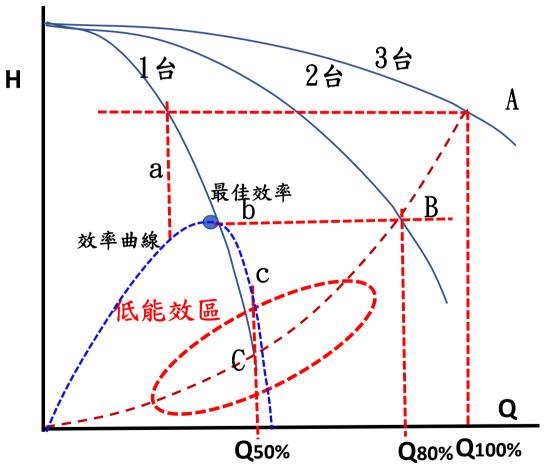
0.8 請泵廠提供冰水泵等耗電比(等總效率)性能曲線



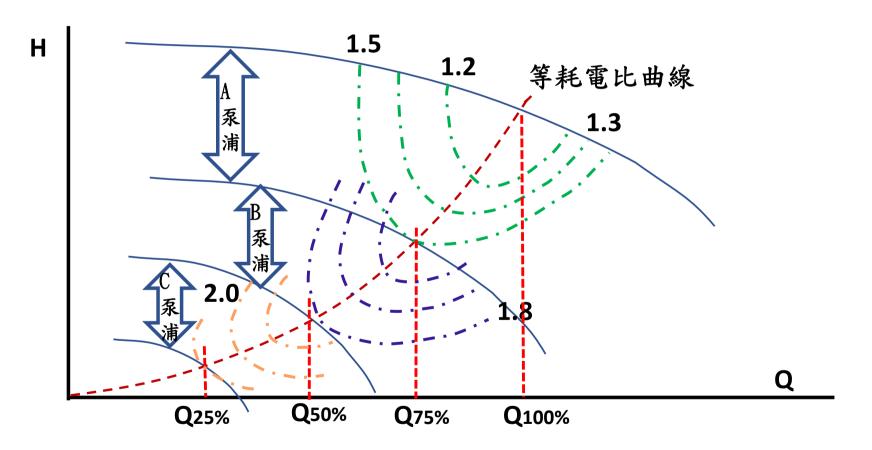
0.9 請泵廠提供冷卻泵等耗電比(等總效率)性能曲線


0.10 泵浦運轉在低能效區域的問題

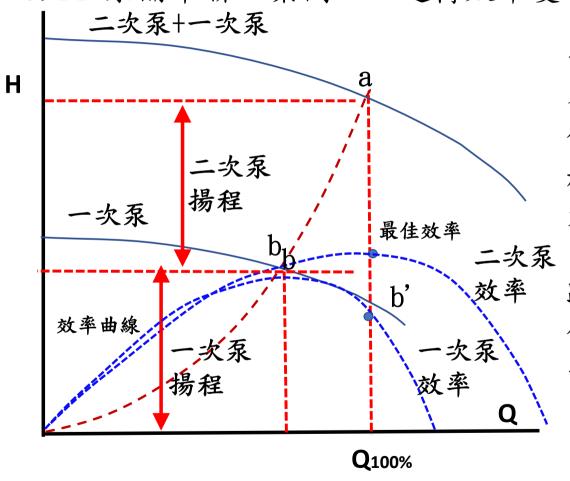
IPLV=2. 3%×A+41. 5%×B+46. 1%×C+10. 1%×D


以IPLV的時 間係數來說, 50%負載的權 重高達41.5%, 表示有將近 一半的時間 運轉在低負 載區域。

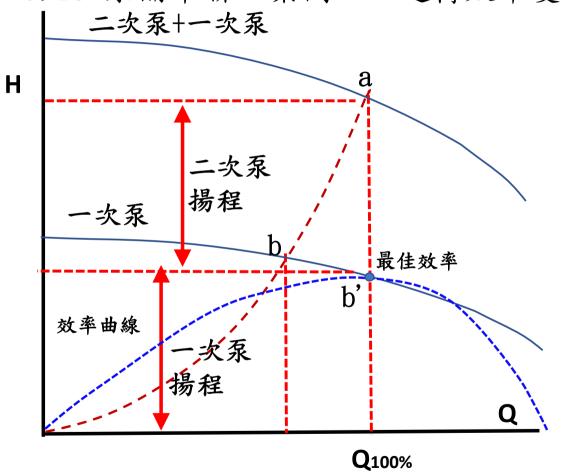
0.11 泵浦並聯運轉轉,案例一,效率變化示意圖1備3用



三台並聯泵浦機組在低流 量下的低能效問題,A、B、 C三個操作點,分別落在 效率曲線上的a、b、c三 點,如圖中的操作點A效 率最佳,操作點B可能落 在10%以外,C操作點的效 率最差,最佳效率點的揚 程太接近操作點A,操作 點C的低能效問題會更惡 化。

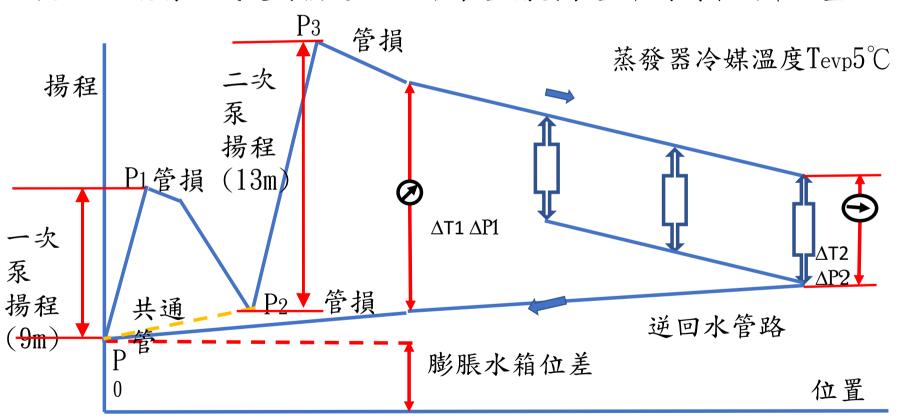

0.12 泵浦並聯運轉,案例二,效率變化示意圖1備3用

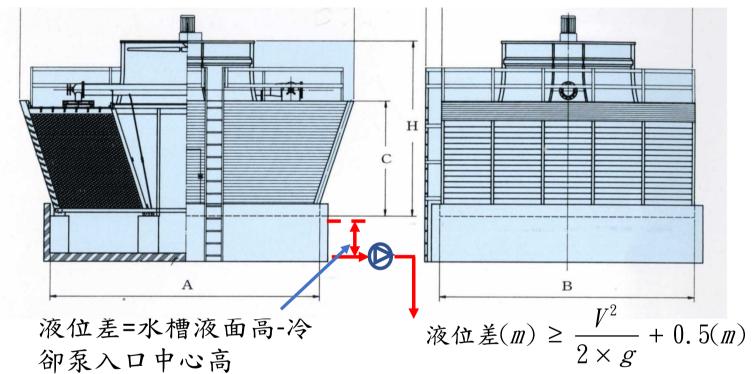
三台並聯泵浦機組在低流 量下的低能效問題,A、B、 C三個操作點,分別落在效 率曲線上的a、b、c三點, 如圖中的操作點A效率稍佳, 操作點B效率最佳,C操作 點的效率最差可能落在20% 以外,單台泵浦的最高效 率點的揚程應位於操作點A 與操作點B之間,但仍無法 解決操作點C的低能效問題。 0.13 泵浦並聯運,案例三,A泵×2台一備一用,B泵×1台,C泵×1台



0.14 泵浦串聯,案例一,運轉效率變化示意圖

一次泵與二次泵的選用, 不能只考慮個別泵浦的操 作點,因為二個泵浦串連 起來之後必須等同於一顆 泵浦來測試,二者流量相 二次泵 同,如圖中的一次泵與管 路阻抗曲線的操作點為b, 但串聯後的操作點b',而 一次泵的實際運轉效率會 落在b'的低效率區。


0.15 泵浦串聯,案例二,運轉效率變化示意圖


一次泵與二次泵的最高效 率點都必須位在Q100%,因 為如圖中的一次泵與管路 阻抗曲線的操作點為b,但 串聯後的操作點b',這樣 一次泵的實際運轉點會落 在b'的高效率區,也就是 一次泵與二次泵都運轉在 最佳效率點。

0.16 冰水管路壓力變化

在考慮遠端裝設有高壓差的換熱裝置時會採用這樣的系統,遠端空調箱的壓差可能有7m或更高接近10m,各裝置需要裝置平衡閥來調節流量。

冷卻泵與冷卻塔安裝在屋頂時注意事項 0.17

液位差必須大於出水管

動壓再加0.5米,才能

避免吸到空氣。

V:水槽出口流速(m/s)

g: 重力加速度9.81(m/s^2)

- 1. 實施方法
- 1.1. 基本資料與量測資料
- 步驟1. 蒐集數據:冰機/泵浦/冷卻塔耗電功紀錄表(kW)、冷凍 容量(RT)、蒸發器/冷凝器/冷卻塔/室外環境/濕球/出入口 溫度(℃)、泵出入口壓力(bar)、壓力錶對基準面位差(m)、 冰水流速(m/s)、冷卻水流速(m/s)、泵浦轉速(rpm)、冷卻 塔位差(m)等。
- 步驟2. 流量Q(cms,cmm,cmh)計算:剝開保溫棉用皮尺量測管 外週長,再換算為外側直徑,再用厚度計量取管道壁厚(+ 看垢厚),計算管內側直徑與截面積(m²),再乘以流速 (m/s),最後得到流量,冰水流量與冷卻水流量。
- 步驟3. 計算泵浦的揚程H(m):用泵出入口壓力差、壓力錶對基 準面位差與管路流速,計算泵浦揚程H,操作點(Q,H)。

步驟4. 計算冷卻塔近似效率:冷卻水塔效率 50~70%;趨近溫度 $\Delta T = 3^{\circ}C(\mathbf{d}.5^{\circ}F)$ 以下。

冷卻塔近似效率 =
$$\frac{(Ti - To)}{(Ti - Tw)} \times 100\%$$
 趨近溫度 $\Delta T = To - Tw$

Ti:入口水温;To:出口水温;Tw:大氣溼球溫度

- 1.2. 系統量測數據計算
- 步驟5. 蒸發器冷凍量計算(kW,RT):用量測的溫差℃與量測流量 (m³/s)推算冷凍容量(kW,RT),稱為系統熱負載,其實是冰 水熱負載(kW),等於系統熱負載+冰水泵的馬達輸出熱量(軸 功kW),若冰水泵也在室內,那就是耗電功。
- 步驟6. 凝器散熱量計算(kW,RT): 用量測的溫差℃與量測流量 (m³/s)推算冷凝器散熱量(kW,RT),這散熱量為冷卻塔的散 熱負載(kW)的一部份,稱為冷卻水熱負載(kW),等於冷媒熱 負載+冷卻泵的馬達輸出熱量(軸功kW),冷媒熱負載等於冰 水熱負載+壓縮機耗電,若冷卻泵也在室內,那就是耗電功。 步驟7. 冷卻塔散熱量計算(kW,RT):冷凝器散熱量(kW,RT),這 散熱量為冷卻塔的散熱負載(kW)的一部份,稱為冷卻水熱負 載(kW),再加上冷卻塔的馬達耗電功(軸功kW),等於室外循 環空氣的散熱量。

冰水熱負載(kW) = 系統熱負載(kW) + 冰水泵軸功(kW)或耗電功(kW)冷媒熱負載(kW) = 冰水熱負載(kW) + 壓縮機耗電功(kW)冷卻水熱負載(kW) = 冷媒熱負載(kW) + 冷卻泵軸功(kW)或耗電功(kW)冷卻塔散熱量(kW) = 冷卻水熱負載(kW) + 風扇軸功(kW)或耗電功(kW)

步驟8. 計算水側系統與各項裝置之能效,量測值:

系統能效 $(kW/RT) = \frac{(冰機耗電功 + 冰水泵耗電功 + 冷卻泵耗電功 + 冷卻塔耗電功)(kW)}$ 系統熱負載(冰水熱負載)(RT)

附屬設備能效 $(kW/RT) = \frac{(冰水泵耗電功 + 冷卻泵耗電功 + 冷卻塔耗電功)(kW)}{系統熱負載(冰水熱負載)(RT)} \leq 0.12(kW/RT)$

冷卻泵能效 $(kW/RT) = \frac{$ 冷卻泵耗電功(kW) 系統熱負載 $(kW \wedge RT) = \frac{$ 冷卻塔耗電功(kW) 步驟9. 計算冰機電功負載比例%:冰機耗電功(kW)/冰機額定點 耗電功(kW),代表冰機電功部分負載比率。

步驟10. 計算冰機冷凍負載比例%:冰機熱負載(RT)/冰機額定點 冷凍容量(RT),代表冰機冷凍部分負載比率。

> 冰機冷凍負載比@= = $\frac{冷凍頓(RT)_{@=\mathbb{P}^{d}}}{冷凍頓(RT)_{@\otimes\mathbb{P}^{d}}}$ 冰機耗電負載比 $_{@ = \mathbb{N}^{d}} = \frac{\mathbb{E} \mathfrak{V}(k\mathbb{W})_{@ = \mathbb{N}^{d}}}{\mathbb{E} \mathfrak{V}(k\mathbb{W})_{@ \otimes \mathbb{N}^{d}}}$

指標計算

- 步驟11. 計算冰水泵耗電搬運效率(kW/kW):冰水熱負載(kW)/耗 雷功(kW),代表經由馬達單位電功(kW)馱運出來的熱量 (kW),其比值代表系統的蒸發器+管路+內部洩漏的熱交換 能力。
- 步驟12. 計算冷卻水泵耗電搬運效率(kW/kW):冷卻水熱負載 (kW)/耗電功(kW),代表經由馬達單位電功(kW)能由冷凝器 馱運出來的熱量(kW),其比值代表系統的冷凝器+管路+冷卻 水塔的熱交換能力。
- 步驟13. 冷卻塔搬運效率 (kW/kW): 等於冷卻塔散熱量(kW)/冷卻 風扇耗電量(kW)。

指標計算

搬運效率
$$_{@冰水泵@耗電}(kW / kW) = \frac{ 冰水熱負載(kW)}{ 冰水泵耗電功(kW)}$$
 搬運效率 $_{@冷卻泵@耗電}(kW / kW) = \frac{ 冷卻水熱負載(kW)}{ 冷卻泵耗電功(kW)}$ 搬運效率 $_{@冷卻塔@耗電}(kW / kW) = \frac{ 冷卻塔散熱量(kW)}{ 風扇耗電功(kW)}$

指標計算

步驟14. 計算冷卻塔水量耗電比:耗電功(kW) /流量(L/min) @溫 差℃,每單位水量(L/min)所需的耗電功(kW),冷卻水量會 與溫差成反比。

水量耗電比
$$(kW / Lpm) = \frac{風扇耗電功(kW)}$$
 冷卻水量 (Lpm)

指標計算

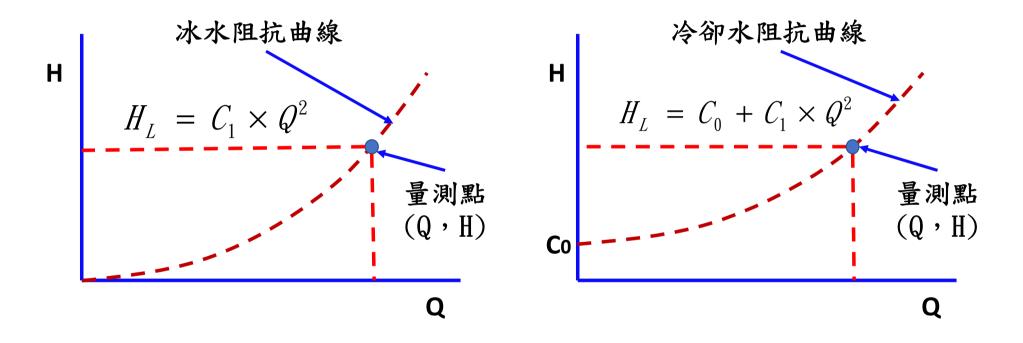
步驟15. 計算泵浦的耗電比:耗電比(kW/kW) =耗電功(kW)/流功 (kW),每一台冰水泵與冷卻泵分別計算,另一種能效形式。

耗電比 =
$$\frac{1}{\text{總效率%}}$$
 = $\frac{1}{\text{泵 浦效率%} \times \text{馬達效率%}}$
耗電比 $_{\text{冰水泵}}(kW / kW)$ = $\frac{\text{耗電功}_{\text{冰水҈}}(kW)}{\text{流功}_{\text{冰水ậ}}(kW)}$
耗電比 $_{\text{冷卻哀}}(kW / kW)$ = $\frac{\text{耗電功}_{\text{冷卻哀}}(kW)}{\text{流功}_{\text{冷卻哀}}(kW)}$

指標計算

步驟16. 由歐盟泵浦能效與IE3馬達計算泵浦的耗電比:

當系統能效需要更新時,必須引入高能效泵浦,而歐盟的泵 浦能效是非常有用的参考。


步驟17. 部分負載時,必須運用阻抗曲線進行新的揚程計算,冰 水機的部分負載與流量成正比,而泵浦的流量與轉速成正比, 但須跟阻抗曲線配合算出真正的變頻轉速下的揚程。

步驟18. 計算冰水管路阻抗曲線:冰水管路為閉迴路的0形閉迴 管路,係數Co為O,只有係數CI需要計算,有固定管路負載 計算或變動負載曲線計算,並繪製曲線。

$$H_L = C_1 \times Q^2$$

步驟19. 計算冷卻水管路阻抗曲線:冷卻水管路多數為開口向上 的U形管路,有係數Co與C1需要計算,係數Co為冷卻塔散水 盤與盛水盤的位差(m),多數以固定管路負載來計算,計算 阻抗曲線的係數Co與C1,並繪製曲線。

$$H_L = C_0 + C_1 \times Q^2$$

步驟20. 計算輸出流功(kW) ; $\rho(kg/m^3) \times g(m/s^2) \times H(m) \times Q(m^3/s)/1000$ 步驟21. 計算冰水流功搬運效率(kW/kW):冰水熱負載(kW)/冰水 流功(kW),代表經由單位流功(kW)能由蒸發器馱運出來的 熱負載(kW),跟馬達能效無關,其比值代表系統的蒸發器+ 管路+內部洩漏的熱交換能力。

步驟22. 計算冷卻水流功搬運效率(kW/kW):冷卻水熱負載(kW)/ 冷卻水流功(kW),代表經由單位流功(kW)能由冷凝器馱運 出來的熱負載(kW),跟馬達能效無關,其比值代表系統的 冷凝器+管路+冷卻塔的熱交換能力。

流功(kW) =
$$\rho(kg / m^3) \times g(m / s^2) \times H(m) \times Q(m^3 / s) / 1000$$

清水密度 $\rho(kg / m^3) = 1000(kg / m^3)$
重力加速度 $g(m / s^2) = 9.81(m / s^2)$
搬運效率 $_{*^{k} \times k_{\bar{k}, \bar{n}, \bar{n}}}(kW / kW) = \frac{\text{熱} \, \text{軌} \, \text{載}_{k_{\bar{k}}}(kW)}{\hat{\pi} \, \mathcal{H}_{k_{\bar{k}}}(kW)}$
搬運效率 $_{\hat{k}^{\hat{m}_{\bar{k}}, \bar{n}, \bar{n}}}(kW / kW) = \frac{\text{N} \, \text{♠} \, \text{も}_{\hat{k}^{\hat{m}_{\bar{k}}}}(kW)}{\hat{\pi} \, \mathcal{H}_{k_{\bar{k}}}(kW)}$

現況修正回溫差5℃

回歸溫差@5℃標準狀況,重新計算系統能效,在蒸發器熱負 載、冷凝器熱負載與冰水機耗電量不變下,冰機能效不變、 泵浦耗電比不變,重新計算溫差5℃下流量及其他指標。

系統熱負載(冰水熱負載) $_{0.5^{\circ}}(RT) = 系統熱負載(冰水熱負載)_{0.6^{\circ}}(RT)$

步驟23. 溫差@5℃時的流量(cmm):修正回溫差為5℃時的流量 (m^3/min) ,流量Q與溫差 ΔT 成反比,含蒸發器與冷凝器的 溫差修正。

Uberty

步驟24. 溫差5℃計算泵浦流功(kW):用阻抗曲線計算泵浦在溫 £ @5 ° C 時的揚程(m)並計算出流功(kW),冰水泵與冷卻泵, 溫差@5°C的操作點(Q_{05} °C, H_{05} °C)。

$$H_{0.5^{\circ}C\!k\cdot\!k\cdot\!k\cdot\!k} = C_{1} \times Q_{0.5^{\circ}C\!k\cdot\!k\cdot\!k\cdot\!k}^{2}$$
 $H_{0.5^{\circ}C\!k\cdot\!k\cdot\!k\cdot\!k} = C_{0} + C_{1} \times Q_{0.5^{\circ}C\!k\cdot\!k\cdot\!k\cdot\!k}^{2}$
流功 $_{0.5^{\circ}C\!k\cdot\!k\cdot\!k\cdot\!k} = \rho(kg \ / \ m^{3}) \times g(m \ / \ s^{2}) \times H_{0.5^{\circ}C\!k\cdot\!k\cdot\!k\cdot\!k}(m) \times Q_{0.5^{\circ}C\!k\cdot\!k\cdot\!k\cdot\!k}(m^{3} \ / \ s) \ / \ 1000$
流功 $_{0.5^{\circ}C\!k\cdot\!k\cdot\!k\cdot\!k} = \rho(kg \ / \ m^{3}) \times g(m \ / \ s^{2}) \times H_{0.5^{\circ}C\!k\cdot\!k\cdot\!k\cdot\!k}(m) \times Q_{0.5^{\circ}C\!k\cdot\!k\cdot\!k\cdot\!k}(m^{3} \ / \ s) \ / \ 1000$

冰水泵耗電比測試報告,冷卻水泵耗電比測試報告

步驟25. 泵浦耗電功@溫差5℃:請由0.8節到0.16節考慮泵浦機

組之性能組合並由泵浦等耗電比曲線取得耗電比的值,並 由泵浦耗電比乘以流功來獲得馬達@溫差5℃的耗電功,含 冰水泵與冷卻泵。

若無法得到泵廠提供的等耗電比曲線,可以假設泵浦的耗 電比等同於量測值而直接引用。

耗電功 $_{0.3,4,5,0.5}$ $_{0.3,4,5}$ $_{0.5}$ $_{0.5,4}$ $_{0.5}$ $_{0.5,4}$ $_{0.5,$

耗電功@冷卻泵@5℃冷卻水 = 流功@5℃冷卻水 × 耗電比@冷卻泵

冰機測試報告

步驟26. 冰機冷凍容量 $(RT)@溫差5^{\circ}C$: 可以假設冰機@溫差5 $^{\circ}C$ 的 能效等同於量測值而直接引用其冰機耗電功,因為在做溫 度轉換時冰機的能效(kW/RT)並沒有改變。

冰機能效 $(kW/RT)_{0.5\%}$ 冰機能效 $(kW/RT)_{0.6\%}$ 冰機冷凍噸 $(RT)_{0.5^{\circ}} = 冰機冷凍噸(RT)_{0.6^{\circ}}$ 冰機耗電功@5℃ = 冰機耗電功@量測值

Uberty

步驟27. 冷卻塔耗電功@溫差5 $^{\circ}$ $^{\circ}$:用步驟14計算冷卻塔的能效, 耗電量/水量,來估計冷卻風扇的耗電值,因為溫差大時用 更少的外部循環空氣之風量就可以散去相同的熱量,也就 是風扇耗用更少的電量,在溫差加大時散熱效率會稍微提 高,在横流式冷卻塔因為有效換熱面積大,但在相同的散 熱需求下散熱塔的能效不變。

水量耗電比 $_{0.5\%}(kW / Lpm) = 水量耗電比_{0.6\%}(kW / Lpm)$ 風扇耗電功 $_{0.5\%}(kW) = 冷卻塔水量(Lpm)_{0.5\%} \times 水量耗電比_{0.5\%}(kW / Lpm)$ 步驟28. 指標計算-耗電搬運效率

搬運效率 $_{@{\hat{\wedge}} \oplus {\mathbb{R}} \oplus {\mathbb$ ~ 冷卻泵耗電功(kW) 搬運效率_{@冷卻塔@耗電@@溫差5℃} $(kW / kW) = \frac{$ 冷卻塔散熱量(kW) 風扇耗電功(kW) 步驟29. 參考步驟8, 計算水側系統與各項裝置@溫差5℃之能效。

系統能效
$$_{@5C}(kW/RT) = \frac{(冰機耗電功+冰水泵耗電功+冷卻泵耗電功+冷卻搭耗電功)_{@5C}(kW)}{系統熱負載(冰水熱負載)_{@5C}(RT)}$$

附屬設備能效
$$_{05C}(kW/RT) = \frac{(冰水泵耗電功+冷卻泵耗電功+冷卻搭耗電功)_{05C}(kW)}{系統熱負載(冰水熱負載)_{05C}(RT)} \leq 0.12(kW/RT)$$

冰機能效
$$_{05C}(kW/RT) = \frac{$$
 冰機耗電功 $_{05C}(kW)$ $}{$ 系統熱負載(冰水熱負載) $_{05C}(RT)$ $}$ 冰水泵能效 $_{05C}(kW/RT) = \frac{$ 冰水泵耗電功 $_{05C}(kW)$ $}{$ 系統熱負載(冰水熱負載) $_{05C}(RT)$ $}$ 冷卻泵能效 $_{05C}(kW/RT) = \frac{$ 冷卻系耗電功 $_{05C}(kW)$ $}{$ 系統熱負載(冰水熱負載) $_{05C}(RT)$ $}$ 冷卻塔能效 $_{05C}(kW/RT) = \frac{$ 冷卻塔耗電功 $_{05C}(kW)$ $}{$ 系統熱負載(冰水熱負載) $_{05C}(RT)$

- 3. 修回溫差5℃+功率100%
- 回歸冰機額定點耗電功@電功100%、溫差@5℃標準狀況
- 步驟30. 計算冰機電功100%負載時壓縮機冷凍容量(RT): 用冰水 機能效測試報告,計算出冰機功率100%時冰水機的冷凍 容量。

方法一、用線性內插法

- 1.冰機在負載100%75%50%25%時的出廠測試數據,冷凍噸(RT)、耗電功(kW)
- 2.冰機在現場量測時耗電功(kW)與冷凍噸(RT)
- 3.取相同耗電功下的冷凍噸比(RT / RT)

冰水機冷凍噸
$$_{@ \equiv 功100\%}(RT) = \frac{ 冷凍噸(RT)_{@5C}}{ 冷凍噸(RT)_{@ 出廠值@相同電功}} \times 冷凍噸(RT)_{@ \equiv 功100\%@ 出廠測試值}$$

Uberty

方法二、假設冰機能效相同或近似(缺乏數據下才使用,一般不建議)

1.冰機在現場量測時之冰機能效(kW/RT) = 耗電功(kW)/冷凍噸(RT)

2.假設在馬達100%75%、50%、25%負載下,冰機的能效相同

冰水機冷凍噸@電功100%(RT) = 馬達耗電功(kW)@電功100%@出廠測試值 冰機能效(kW/RT)

步驟31.計算壓縮機@電功100%時的流量:以冰水主機的設計規 格計算相對流量。

引用冰機設計規格@功率100%

1.蒸發器入出水溫差: 5℃

2.冷凝器入出水温差: 5℃

3.冰水循環量: 10*Lpm / RT*

4.冷卻水循環量: 12.5Lpm / RT

冰水泵流量 $_{@ \equiv 100\%} = 10 Lpm \times 冷凍頓(RT)_{@ \equiv 100\%}$

冷卻泵流量@ $= 12.5 Lpm \times 冷凍頓(RT)$ @ = 100%

Uberty

步驟32. 壓縮機耗電功100%計算泵浦流功(kW): 用阻抗曲線計算 泵浦在壓縮機耗電功100%且溫差5℃時的揚程(m)並計算出 流功(kW),冰水泵與冷卻泵。

$$Q_{0 \equiv j_1 100\% 0.5 \text{°C} \times k \times \text{R}}(\textit{Lpm}) = 冰水機冷凍頓_{0 \equiv j_1 100\% 0.5 \text{°C}}(\textit{RT}) \times 10(\textit{Lpm} / \textit{RT})$$
 $Q_{0 \equiv j_1 100\% 0.5 \text{°C} \wedge j_2 \text{R}}(\textit{Lpm}) = 冰水機冷凍頓_{0 \equiv j_1 100\% 0.5 \text{°C}}(\textit{RT}) \times 12.5(\textit{Lpm} / \textit{RT})$
 $H_{0.5 \text{°C} \times k \times \text{R}} 0 \equiv j_1 100\%} = C_1 \times Q_{0.5 \text{°C} \times k \times \text{R}} 0 \equiv j_1 100\%}^2$
 $H_{0.5 \text{°C} \times k \times \text{R}} 0 \equiv j_1 100\%} = C_0 + C_1 \times Q_{0.5 \text{°C} \times k \times \text{R}} 0 \equiv j_1 100\%}^2$
 $\mathring{\pi} \mathcal{D}_{0.5 \text{°C} \times k \times \text{R}} = \rho(kg / m^3) \times g(m / s^2) \times H_{0.5 \text{°C} \times k \times \text{R}} (m) \times Q_{0.5 \text{°C} \times k \times \text{R}} (m^3 / s) / 1000$
 $\mathring{\pi} \mathcal{D}_{0.5 \text{°C} \times j_1 100\%} = \rho(kg / m^3) \times g(m / s^2) \times H_{0.5 \text{°C} \times j_1 100\%} (m) \times Q_{0.5 \text{°C} \times j_1 100\%} (m^3 / s) / 1000$
 $\mathring{\pi} \mathcal{D}_{0.5 \text{°C} \times j_1 100\%} = \rho(kg / m^3) \times g(m / s^2) \times H_{0.5 \text{°C} \times j_1 100\%} (m) \times Q_{0.5 \text{°C} \times j_1 100\%} (m^3 / s) / 1000$

冰水泵耗電比測試報告,冷卻水泵耗電比測試報告

步驟33. 泵浦耗電功@溫差5°C@功率100% : 請由0.8節到0.16節考 慮泵浦機組之性能組合並由泵浦等耗電比曲線取得耗電比的 值, 並由泵浦耗電比乘以流功來獲得馬達@溫差5℃功率 @100%的耗電功,含冰水泵與冷卻泵。 若無法得到泵廠提供的等耗電比曲線,可以假設泵浦的耗電 比等同於量測值而直接引用。

耗電功@5°C冰水泵@電功100% = 流功@5°C冰水泵@電功100% × 耗電比@5°C冰水泵@電功100% 毛電功@5°C冷卻泵@雷功100% = 流功@5°C冷卻泵@雷功100% × 耗電比@5°C冷卻泵@雷功100%

步驟34. 指標計算-耗電搬運效率

搬運效率_{@冷卻泵@耗電@功率100%} $(kW / kW) = \frac{冷卻水熱負載(kW)}{\sqrt{n-1}}$ 冷卻泵耗電功(kW) 搬運效率_{@冷卻塔@耗電@功率100%} $(kW / kW) = \frac{$ 冷卻塔散熱量(kW) 風扇耗電功(kW) 步驟35. 冷卻塔耗電功@溫差5°C@電功100%: 用步驟14計算冷卻 塔的能效,耗電量/水量,來估計冷卻風扇的耗電值,因為 @電功100%時需要散熱的負載更多而冷卻水的流量也更大, 也就是風扇耗用更多的電量才能維持@溫差5℃的條件,在 横流式冷卻塔因為有效換熱面積大,但在@電功100%下的散 熱需求下仍然假設散熱塔的水量耗電比不變。

水量耗電比 $_{0.5^{\circ}C@ \oplus 7100\%}(kW / Lpm) = 水量耗電比_{0.6\%(kW / Lpm)}$ 風扇耗電功 $_{0.5\%}$ $_{0.5\%}$ $_{0.5\%}$ $_{0.5\%}$ $_{0.5\%}$ $_{0.5\%}$ $_{0.5\%}$ $_{0.5\%}$ $_{0.5\%}$ $_{0.5\%}$ $_{0.5\%}$ $_{0.5\%}$ $_{0.5\%}$ $_{0.5\%}$ $_{0.5\%}$ $_{0.5\%}$ $_{0.5\%}$ 步驟36.@溫差5℃@功率100%水側系統與各項裝置能效。

- 4. 更新冰機+泵浦+舊管路+舊冷卻塔
- 步驟37. 依據相同的冷凍容量選用新的離心冰機:冰機在100% 負載@5℃下運轉,計算所需的流量。
- 步驟38. 依據舊管路的系統特性計算泵浦所需揚程:依阻抗曲 線輸入流量來獲得所需揚程。
- 步驟39. 選用歐盟能效的高能效泵浦:請由0.5節輸入流量揚程 來計算比速率Ns,再帶入公式計算可以獲得的泵浦效率, 選用MEI=0.4的能效等級。

步驟40. 選用IE3等級馬達:請由0.5節根據IE3感應馬達的規格 找出合適的高能效馬達並進一步計算耗電比與泵浦流功。

耗電比
$$_{@ lpha ext{ iny $100\% @ ws}} = \frac{1}{$$
 泵浦效率 $_{@ ws} ext{ iny 2} imes 馬達效率}$ 流功 $(kW) = \rho(kg / m^3) imes g(m / s^2) imes H(m) imes Q(m^3 / s) / 1000$ 清水密度 $\rho(kg / m^3) = 1000(kg / m^3)$ 重力加速度 $g(m / s^2) = 9.81(m / s^2)$ 耗電功 $_{@ imes imes imes 0}$ $(m / s^2) = \frac{1000}{2}$ 新力 $_{@ imes imes imes 0}$ (m / s^2) 表電力 $_{@ imes imes imes 0}$ (m / s^2) 表電力 $_{@ imes imes imes 0}$ (m / s^2) 表電力 $_{@ imes imes imes 0}$ (m / s^2) 表電力 $_{@ imes imes imes 0}$ (m / s^2) 表電力 $_{@ imes 0}$ (m / s^2) (m / s^2) 表電力 $_{@ imes 0}$ (m / s^2) 表電力 $_{@ imes 0}$ (m / s^2) (m / s^2) 表電力 $_{@ imes 0}$ (m / s^2) (m / s^2)

步驟41.計算系統能效

冰機能效 $_{@\hspace{-0.05cm} \hspace{-0.05cm} \hspace$

冷卻泵能效 $_{@ \, \hspace{-0.5mm} \otimes \hspace{-0$

步驟42. 指標計算-耗電搬運效率

搬運效率 $_{\mathbb{Q}$ 冷卻泵 \mathbb{Q} 耗電 \mathbb{Q} 新冰機 $(kW / kW) = \frac{$ 冷卻水熱負載(kW)冷卻泵耗電功(kW) 搬運效率_{@冷卻塔@耗電@新冰機} $(kW / kW) = \frac{$ 冷卻塔散熱量(kW) 風扇耗電功(kW)

- 5. 全新系統
- 步驟43. 依據相同的冷凍容量選用新的離心冰機:冰機在100% 負載@5℃下運轉,計算所需的流量。
- 步驟44. 依據新管路系統特性計算泵浦所需揚程:依管路各元 件與裝置之揚程損失項計算管路損失來決定所需揚程,可 以參考Ashrae90.1的建議,冰水管路總揚程≦22m,。
- 步驟45. 選用歐盟能效的高能效泵浦:請由0.5節輸入流量揚程 來計算比速率Ns,再帶入公式計算可以獲得的泵浦效率, 選用MEI=0.4的能效等級。

步驟46. 計算新管路之冰水管路阻抗曲線:冰水管路為閉迴路的 O形閉迴管路,係數Co為O,只有係數C1需要計算,有固定管 路負載計算或變動負載曲線計算,並繪製曲線。

$$H_L = C_1 \times Q^2$$

步驟47. 計算新管路之冷卻水管路阻抗曲線:冷卻水管路多數為 開口向上的U形管路,有係數Co與C1需要計算,係數Co為冷 卻塔散水盤與盛水盤的位差(m),多數以固定管路負載來計 算,計算阻抗曲線的係數Co與C1,並繪製曲線。

$$H_L = C_0 + C_1 \times Q^2$$

步驟48. 選用IE3等級馬達:請由0.5節根據IE3感應馬達的規格 找出合適的高能效馬達並進一步計算耗電比與泵浦流功。

步驟49. 計算系統能效

系統能效 $_{@\,2\,\%}(kW\,/\,RT)=\frac{($ 冰機耗電功 + 冰水泵耗電功 + 冷卻泵耗電功 + 冷卻塔耗電功 $)_{@\,2\,\%}(kW)}$ 系統熱負載(冰水熱負載 $)_{@\,2\,\%}(RT)$

附屬設備能效 $_{@^{2}}(kW/RT) = \frac{(冰水泵耗電功 + 冷卻泵耗電功 + 冷卻塔耗電功)_{@^{2}}(kW)}{系統熱負載(冰水熱負載)_{@^{2}}(RT)} \leq 0.12(kW/RT)$

冰機能效
$$_{0 \le m}(kW / RT) = \frac{\text{冰機耗電功}_{0 \le m}(kW)}{\text{系統熱負載(冰水熱負載)}_{0 \le m}(RT)}$$
 冰水泵能效 $_{0 \le m}(kW / RT) = \frac{\text{冰水泵耗電功}_{0 \le m}(kW)}{\text{系統熱負載(冰水熱負載)}_{0 \le m}(RT)}$ 冷卻泵能效 $_{0 \le m}(kW / RT) = \frac{\text{冷卻泵耗電功}_{0 \le m}(kW)}{\text{系統熱負載(冰水熱負載)}_{0 \ge m}(RT)}$ 冷卻塔能效 $_{0 \le m}(kW / RT) = \frac{\text{冷卻塔耗電功}_{0 \le m}(kW)}{\text{系統熱負載(冰水熱負載)}_{0 \ge m}(RT)}$

步驟50. 指標計算-耗電搬運效率

搬運效率 $_{@冰水泵@耗電@全新}(kW / kW) = \frac{冰水熱負載(kW)}{冰水泵耗電功(kW)}$ 搬運效率 $_{\mathbb{Q} \land \mathbb{Q} \times \mathbb{Q} \times$ 冷卻泵耗電功(kW) 搬運效率_{@冷卻塔@耗電@全新} $(kW / kW) = \frac{$ 冷卻塔散熱量(kW) 風扇耗電功(kW)

6. 冰機部分負載性能效計算與IPLV計算

步驟51. 部分負載分別計算冷凍噸:針對全新冰機及管路系統進 行IPLV計算,冰機在維持溫差5℃功率100%下,熱負載 100%、75%、50%、25%的冷凍頓,若不是全新冰機系統, 可以把冰機在電功維100%時的冷凍容量是為容量的100%。

冰水機冷凍噸 $_{\text{@} \text{$\alpha$} = 100\%}(RT) = 冰水機冷凍噸_{\text{@} \text{α} = 100\%}(RT)$ 冰水機冷凍噸 $_{\text{Q} \times \text{B}75\%}(RT) = 75\% \times 冰水機冷凍噸_{\text{Q} \times \text{B}100\%}(RT)$ 冰水機冷凍噸 $_{\text{Q} \times \text{B} = 50\%}(RT) = 50\% \times 冰水機冷凍噸_{\text{Q} \times \text{B} = 100\%}(RT)$ 冰水機冷凍噸 $_{Q \times B25\%}(RT) = 25\% \times 冰水機冷凍噸_{Q \times B100\%}(RT)$ 步驟52. 部分負載冰水泵流量計算:熱負載與流量成正比,熱負 載100%、75%、50%、25%的流量計算,請由0.8節到0.16節 考慮泵浦機組之性能組合並由泵浦等耗電比曲線取得耗電 比的值,若不是全新冰機系統,可以把冰機在電功維100% 時的流量是為容量的100%。

$$Q_{@ ext{8} ext{8} ext{100} ext{8} ext{8} ext{8}} = Q_{@ ext{8} ext{3} ext{100} ext{8} ext{8} ext{8}} (Lpm)$$
 $Q_{@ ext{8} ext{8} ext{75} ext{8} ext{8} ext{8} ext{8} ext{8}} = 75\% \times Q_{@ ext{8} ext{8} ext{100} ext{8} ext{8}} ext{8}$
 $Q_{@ ext{8} ext{8} ext{50} ext{8} ext{8} ext{8}} = 50\% \times Q_{@ ext{8} ext{100} ext{8} ext{8}} ext{8}$
 $Q_{@ ext{8} ext{8} ext{25} ext{8} ext{8} ext{8} ext{8}} = 25\% \times Q_{@ ext{8} ext{100} ext{8} ext{8}} ext{8}$

步驟53. 部分負載冷卻泵流量計算:熱負載與流量成正比,熱負 載100%、75%、50%、25%的流量計算,請由0.8節到0.16 節考慮泵浦機組之性能組合並由泵浦等耗電比曲線取得 耗電比的值,若不是全新冰機系統,可以把冰機在電功 維100%時的流量是為容量的100%。

 $Q_{\text{@ 容量 75\% @ 冷卻泵}} = 75\% \times Q_{\text{@ 容量 100% @ 冷卻泵}}$ $Q_{@ \ compared 25\% \ compared 25$

步驟54. 計算冰水管路揚程:冰水管路為閉迴路的0形閉迴管路,係數C0為0,只需輸入流量Q與係數C1就可以得到揚程H,分別計算H100%、H75%、 H50%、H25%。

$$H_L = C_1 \times Q^2$$

步驟55. 計算冷卻水管路阻抗曲線:冷卻水管路多數為開口向上的U形管路,只需輸入流量Q、Co與係數C1就可以得到揚程H, 分別計算H100%、H75%、 H50%、H25%。

$$H_L = C_0 + C_1 \times Q^2$$

Uberty

步驟56. 部分負載冰水泵流功計算:依照冰水泵在熱負載100%、 75%、50%、25%的流量與揚程計算輸出流功。

流 功
$$_{0 \times k \times \mathbb{R}}$$
 $= \rho(kg \ / \ m^3) \times g(m \ / \ s^2) \times H_{0 \times k \times \mathbb{R}}$ $(m) \times Q_{0 \times k \times \mathbb{R}}$ $(m^3 \ / \ s) \ / \ 1000$ $流 功 _{0 \times k \times \mathbb{R}}$ $= \rho(kg \ / \ m^3) \times g(m \ / \ s^2) \times H_{0 \times k \times \mathbb{R}}$ $(m) \times Q_{0 \times k \times \mathbb{R}}$ $(m^3 \ / \ s) \ / \ 1000$ $流 功 _{0 \times k \times \mathbb{R}}$ $= \rho(kg \ / \ m^3) \times g(m \ / \ s^2) \times H_{0 \times k \times \mathbb{R}}$ $(m) \times Q_{0 \times k \times \mathbb{R}}$ $(m^3 \ / \ s) \ / \ 1000$ $流 动 _{0 \times k \times \mathbb{R}}$ $= \rho(kg \ / \ m^3) \times g(m \ / \ s^2) \times H_{0 \times k \times \mathbb{R}}$ $(m) \times Q_{0 \times k \times \mathbb{R}}$ $(m^3 \ / \ s) \ / \ 1000$ $(m^3 \ / \ s) \ / \ 1000$ $(m^3 \ / \ s) \times g(m \ / \ s^2) \times H_{0 \times k \times \mathbb{R}}$ $(m) \times Q_{0 \times k \times \mathbb{R}}$ $(m^3 \ / \ s) \times g(m^3 \ / \ s) \times g(m^3 \ / \ s)$

步驟57. 部分負載冷卻泵流功計算:依照冷卻泵在熱負載100%、 75%、50%、25%的流量與揚程計算輸出流功。

流功_{@冷卻泵 @容量100%} =
$$\rho(kg / m^3) \times g(m / s^2) \times H_{@冷卻泵 @容量100%}(m) \times Q_{@冷卻泵 @容量100%}(m^3 / s) / 1000$$
 流功_{@冷卻泵 @容量100%} = $\rho(kg / m^3) \times g(m / s^2) \times H_{@冷卻泵 @容量75%}(m) \times Q_{@冷卻泵 @容量75%}(m^3 / s) / 1000$ 流功_{@冷卻泵 @容量50%} = $\rho(kg / m^3) \times g(m / s^2) \times H_{@冷卻泵 @容量50%}(m) \times Q_{@冷卻泵 @容量50%}(m^3 / s) / 1000$ 流功_{@冷卻泵 @容量50%} = $\rho(kg / m^3) \times g(m / s^2) \times H_{@冷卻泵 @容量50%}(m) \times Q_{@冷卻泵 @容量50%}(m^3 / s) / 1000$ 流功_{@冷卻泵 @容量25%} = $\rho(kg / m^3) \times g(m / s^2) \times H_{@冷卻泵 @容量25%}(m) \times Q_{@冷卻泵 @容量25%}(m^3 / s) / 1000$

步驟58. 冰水泵在部分負載耗電功 :冰水泵浦在不同部分負載之 操作點,請由0.8節到0.16節考慮泵浦機組之性能組合並由 泵浦等耗電比曲線取得耗電比的值,由等耗電比曲線取得個 操作點的耗電比的值,並由泵浦耗電比乘以流功來獲得部分 負載下的耗電功。

若無法得到泵廠提供的等耗電比曲線,可以假設泵浦的耗電 比等同於量測值而直接引用。

= 流功@冰水泵@容量100% × 耗電比@冰水泵@容量100% 耗電功

= 流功_{@冰水泵@容量75%} × 耗電比_{@冰水泵@容量75%} 耗電功

耗電功 = 流功_{@冰水泵@容量50%} × 耗電比_{@冰水泵@容量50%}

耗電功 = 流功@冰水泵@容量25% × 耗電比@冰水泵@容量25%

步驟59. 冷卻泵在部分負載耗電功 :冷卻泵浦在不同部分負載 之操作點,請由0.8節到0.16節考慮泵浦機組之性能組合並 由泵浦等耗電比曲線取得耗電比的值,由等耗電比曲線取得 個操作點的耗電比的值,並由泵浦耗電比乘以流功來獲得部 分負載下的耗電功。

若無法得到泵廠提供的等耗電比曲線,可以假設泵浦的耗電 比等同於量測值而直接引用。

耗電功 = 流功@冷卻泵@容量100% × 耗電比@冷卻泵@容量100%

耗電功 = 流功@冷卻泵@容量75% × 耗電比@冷卻泵@容量75%

= 流功@冷卻泵@容量50% × 耗電比@冷卻泵@容量50% 耗電功

耗電功 = 流功@冷卻泵@容量25% × 耗電比@冷卻泵@容量25%

步驟60. 冷卻塔部分負載耗電功計算:用步驟13計算冷卻塔的水 量耗電比,耗電量/冷卻水量,來估計冷卻風扇的耗電值, 在横流式冷卻塔因為有效換熱面積大,仍然假設散熱塔的能 效不變。

水量耗電比 $_{\text{Q}_{\alpha}}(kW / Lpm) =$ 水量耗電比 $_{\text{Q}_{\alpha}}(kW / Lpm)$ 冷卻塔耗電功 $_{\text{@x=100}}(kW) = 水量耗電比_{\text{@x=100}}(kW / Lpm) \times 冷卻水量(Lpm)_{\text{@x=100}}$ 冷卻塔耗電功 $_{0x=75\%}(kW) = 水量耗電比_{0x=100\%}(kW / Lpm) \times 冷卻水量(Lpm)_{0x=75\%}$ 冷卻塔耗電功 $_{\text{@x}=50\%}(kW) = 水量耗電比_{\text{@x}=100\%}(kW / Lpm) \times 冷卻水量(Lpm)_{\text{@x}=50\%}$ 冷卻塔耗電功 $_{\text{@x=25}\%}(kW) = 水量耗電比_{\text{@x=100}\%}(kW / Lpm) \times 冷卻水量(Lpm)_{\text{@x=25}\%}$

步驟61.負載容量100%水側系統與各項裝置能效。

系統能效
$$_{@ \, \hspace{-0.07cm} \hspace{-0.07cm$$

附屬設備能效
$$(kW/RT) = \frac{(冰水泵耗電功+冷卻泵耗電功+冷卻搭耗電功)_{((QQ))}(kW)}{系統熱負載(冰水熱負載)_{((QQ))}(RT)} \leq 0.12(kW/RT)$$

步驟62.負載容量75%水側系統與各項裝置能效。

系統能效
$$_{@ \, \hspace{-0.05cm} \hspace{-0.05cm$$

附屬設備能效
$$_{@ar{s}_{e} \ | \ N}$$
 $(kW \ / RT) = \frac{(冰水泵耗電功 + 冷卻泵耗電功 + 冷卻搭耗電功)_{@ar{s}_{e} \ | \ N}}{$$$ $(kW \ / RT)$ $(kW \ / RT)$

冰粉的
$$(RT)$$
 = $\frac{\text{冰粉和的}_{\text{coll}}(RT)}{\text{skinhologor}(RT)}$ $\text{冰水和的}_{\text{coll}}(RT)$ $\text{水水和的}_{\text{coll}}(RT)$ $\text{skinhologor}(RT)$ $\text{skinhologor}(RT)$

步驟63.負載容量50%水側系統與各項裝置能效。

系統能效
$$_{@ \, \hspace{-0.05cm} \hspace{-0.05cm$$

附屬設備能效
$$_{@ar{arphi_{2}}}(kW/RT)=\frac{(冰水泵耗電功+冷卻泵耗電功+冷卻搭耗電功)_{@ar{arphi_{2}}}(kW)}{系統熱負載(冰水熱負載)_{@ar{arphi_{2}}}(RT)}\leq 0.12(kW/RT)$$

冰粉的
$$(RT)$$
 = $\frac{\text{冰粉和的 }_{\text{color}}(RT)}{\text{skinholor}_{\text{color}}(RT)}$ $\text{冰水系的的 }_{\text{color}}(RT)$ $\text{kinholor}_{\text{color}}(RT)$ $\text{skinholor}_{\text{color}}(RT)$ $\text{skinholor}_{\text{color}}(RT)$ $\text{skinholor}_{\text{color}}(RT)$ $\text{skinholor}_{\text{color}}(RT)$ $\text{skinholor}_{\text{color}}(RT)$ $\text{skinholor}_{\text{color}}(RT)$ $\text{skinholor}_{\text{color}}(RT)$ $\text{skinholor}_{\text{color}}(RT)$ $\text{skinholor}_{\text{color}}(RT)$ $\text{skinholor}_{\text{color}}(RT)$

步驟64.負載容量25%水側系統與各項裝置能效。

系統能效
$$_{@ \, \hspace{-0.05cm} \hspace{-0.05cm$$

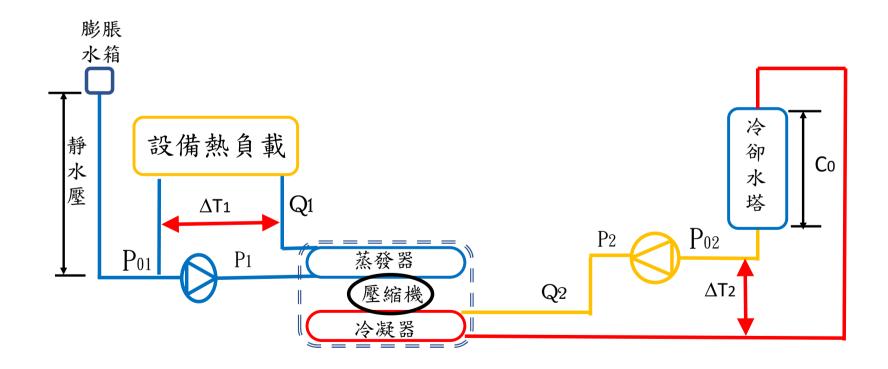
附屬設備能效
$$_{@ \hspace{-0.05cm} \otimes \hspace{-0.$$

冰粉的
$$(NN/RT) = \frac{\text{冰粉和的 } (NN/RT)}{\text{ $\ship \ship \$$

步驟65. IPLV (integrated part load value)綜合部分負荷性 能係數計算:在個冰水管路負載模型中分計算。 IPLV=2.3%×A+41.5%×B+46.1%×C+10.1%×D, A是100%運轉, B是75%運轉,C是50%運轉,D是25%運轉。

> $IPLV = 2.3\% \times$ 系統能效_{@ 交易100%} (kW / RT)+ 41.5%×系統能效_{@ 交量75%}(kW / RT) + 46.1%×系統能效_{® 交易50%}(kW / RT) $+10.1\% \times$ 系統能效_{@ 容量25%} (kW / RT)

2.3%、41.5%、46.1%、10.1%為運轉時的時間係數


- 7. 更新水側系統與投資價值評估
- 步驟66. 選用高能效冰水機:當水側系統能效無法滿足要求時, 應該分別檢討冰水機能效與附屬設備能效,優先考慮更換 磁浮離心機, 0.55kW/RT-0.6kW/RT, 或變頻螺旋機,
- 0.65kW/RT-0.7kW/RT, 並追求附屬設備能效≤0.12kW/RT。 步驟67. 檢討管路上的閥:當管路上裝設沒有必要的逆止閥時, 冰水管路為0型閉迴路完全沒有防止水錘的需求,多數冷 卻管路為開口向上的U行管路也沒有防止水錘的需求。 當多台冰機並聯時,為防止冰水短路,應在各冰機出口裝 設電動蝶閥來隔絕短路狀況,以免浪費多餘的冷凍頓。 共通管應裝設電動蝶閥來隔絕回水與冰水的短路,讓泵浦 操作在合理的操作點,不至於有過高的流量。

- 步驟68. 修改泵浦出入口管:泵浦出入口管往往接1D長度的彎 管或漸擴管,這是嚴重損害泵浦性能的管件,應該優先考 慮採用長度至少2D以上的彎管或漸擴管,更佳的條件是使 用3D或4D長度以上的管件應優先,而具漸擴的彎管更優先 列入考慮,尤其管徑比大時更應該列入考慮。
- 步驟69. 選用高能效泵浦:當附屬設備能效無法滿足要求時, 應該優先考慮更換冰水泵與冷卻泵,由100%容量下的冰水 泵操作點與冷卻泵操作點重新選用高效率的泵浦,請由 0.5節輸入流量揚程來計算比速率Ns,再帶入能效公式計 算可以獲得的泵浦效率,再根據IE3感應馬達的規格找出 合適的高能效馬達,再由步驟21計算出耗電比,請泵浦廠 根據這樣操作點規格提供等耗電比曲線,如步驟23與步驟 24所示。

- 步驟70. 重新計算管路阻抗:請把Ashrae90.1的低揚程與低流 速列入考慮,請選用低管損的平衡閥,冰水管路總揚程 $\leq 22m$,冷卻水管路總揚程 $\leq 19m$, $0.4m/s \leq 冰水管路流速$ $\leq 1.8 \text{m/s}$, $0.4 \text{m/s} \leq$ 冷卻水管路流速 $\leq 2.0 \text{m/s}$, 許多安 裝冰機在屋頂的商業大樓,冰水管路總揚程≦12m,冷卻 水管路總揚程≦9m,對系統能效有很大助益。
- 步驟71. 泵浦運轉在低能效區的問題:請參考0.10節的說明, 單台泵浦運轉在25%流量下必然遇到運轉在低能效的問題, 並聯機組的運轉也會面臨類似的問題只是能效稍好而已, 在規劃高能效泵浦機組時,必須把泵浦測試數據與管路阻 抗曲線做仔細的規劃與比對,才能涵蓋把不同負載下的運 作並取得更佳的系統能效。

- 步驟72. 重新計算更新後的水側系統能效:請重新計算步驟43道 步驟50,把高能效數據引入,把不同負載下的能效重新計算, 再把IPLV的綜合能效值算出,這樣就可以比較出更新高能效 系統的價值。
- 步驟73. 計算節能電度值:系統能效的差值就會是耗電量的差值, 若以每年的連續操作時間以8000小時來計算,就可以獲得系 統每年可以節能的電度,再乘以每電度的金額/度就是節省 的費用,尤其對大型的空調系統來說,這是一筆巨大的節約。 步驟74. 計算節碳當量:「電力排碳係數」指「電力生產過程中, 每單位發電量所產生之二氧化碳排放量」,2019年我國電力 排碳係數為0.509公斤CO2/度,把節能的年總電度值程以電 力排碳係數,就可以獲得減少年碳排放的總量。

8. 案例-設備冰水機-水側系統

表. 1.1-基本資料與量測資料

量測點資料							
執行量測公司	殷聖節能泵浦	執行者姓名	陳建龍				
量測日期	2021. 08. 17	執行者電話	08-7523006				
公司名稱	台灣XX電池	室外環境溫度℃	34				
量測地點	台南市永康區	室外濕球溫度℃	28@64%				
聯絡人姓名	XXX	冰水機用途	製程用				
聯絡人電話	06-XXXXXXX	冰水機型式	螺旋式				

		冰水機數據		
	壓縮機型式	容積式螺旋機	壓縮機並聯數(台)	1
	額定冷凍容量RT	120	運轉負載%	100
	額定耗電量kW	86		
額定值	蒸發器出水溫度℃	7	冷凝器出水溫度℃	35
	蒸發器回水溫度℃	12	冷凝器回水温度℃	30
	蒸發器溫差℃	5	冷凝器溫差℃	5
	運轉耗電量kW	89.6	運轉容量RT	120
量測值	蒸發器入口水溫℃	18.05	冷凝器出口水溫℃	31.4
	蒸發器出口水溫℃	12. 2	冷凝器入口水溫℃	36
計算值	蒸發器出入口溫差℃	5.85	冷凝器出入口溫差℃	4.6

	冰水泵數據(一次泵)							
		膨脹水箱位	高m	3.3				
妬之	額定揚程m	22.8	額定流量Lpm	2350				
額定值	額定馬力kW	30	額定轉速rpm	1750				
但	入口徑mm		出口徑mm					
	馬達效率%	92.4	閉迴路靜位差m	0				
	泵入口壓力bar	1.2	泵出口壓力bar	3. 45				
	入口壓力錶離地板高m	0	出口壓力錶離地板高m	0.35				
量測	運轉耗電量kW	7. 193						
值	管圓周長mm	358.14	管外徑mm	114.0				
	管壁厚	6.6	管截面積mm2	7980.1				
	流速m/s							
計算值	泵浦揚程m	22. 85	流量Lpm	1044.8				

		冷卻泵數	據			
	泵入口與冷卻均	芩盛水盤液			0.5	
	額定揚程m	26. 7	•	額定流量Lpm	2697	
額定值	額定馬力hp	40	,	額定轉速rpm	1750	
· 一种	入口徑mm			出口徑mm		
	馬達效率%	94	3.	運轉耗電量kW	26. 36	
	泵入口壓力bar	0.27	泵	足出口壓力bar	1. 725	
	入口壓力錶離地板高m	0.16	出口,	壓力錶離地板高m	0.16	
量測值	運轉耗電量kW	11.043				
	管圓周長mm	439.2		管外徑mm	139.8	
	管壁厚	6.60		管截面積m ²	12588. 4	
	流速m/s					
計算值	泵浦揚程m	14.5	5	流量Lpm	1630	

	冷卻塔數據							
額定值	灑水盤與盛水盤位差m	2.6	盛水盤與冷卻泵位差m	0.7				
研入 国	額定馬力hp	6	馬達效率%	88.5				
	濕球溫度℃	28	相對濕度%	64%				
量測值	乾球溫度℃	34	運轉耗電功kW	3. 76				
	入水溫度℃	36	出水溫度℃	31.4				
計算值	冷卻塔入出口溫差℃	4.6	趨近溫度℃	3. 4				
日子但	近似效率%	57. 5%						

表. 1.2-系統量測數據計算

		冰水	幾				
狀態	設備	耗電功kW	冷凍頓RT	一次泵hp	冷卻泵hp	冷卻塔hp	總耗電kW
	額定值(kW、RT、hp)	86	120				
	額定溫差℃		5	-	5)	
量測	耗電 kW	89	. 6	7. 193	11.043	3. 760	111.606
值	流量 Lpm		1044	1. 75	1629	. 94	
	揚程 m		22.	85	14.	55	
	量測溫差			85	4. (
	熱負載 kW			. 40	523. 09	526.85	
計算	熱負載 RT		121	. 27	148. 77	149.84	
值	流功 kW			3. 903	3.8		
	系統能效 kW/RT		0.739	0.059	0.091	0.031	0.889
	耗電搬運效率(kW/kW)			59. 3	47. 4	140.1	
指標	流功搬運效率(kW/kW)			109. 2	134.9		
計算	負載比%	104.2%	101.1%				
	耗電比(耗電功/流功、耗電功/流量)			1.843	2.848	0.00231	
	流功搬運效率(kW/kW)			109. 24	134. 90		
1 14	靜位差 m, C₀		0.		2. (
系統	管路阻抗係數C ₁		0.00002093		0.000	00450	
特性	Ashrae90.1(系統熱負載)			≤ 0.0582			
	Ashrae90.1(冷媒熱負載)				\leq 0.0465		

表. 2-現況修正回溫差5℃

		冰水機					
狀態	設備	耗電功 kW	冷凍噸 RT	一次泵 hp	冷卻泵 hp	冷卻塔hp	總耗電 kW
	額定值(kW、RT、hp)	86	120				
	負載比	104.2%	101.1%				
	額定溫差℃		5. 0			. 0	
量測、	靜位差 m, C ₀		0.	00		60	
計算、	管路阻抗係數C ₁		0.00002093			000450	
指標	耗電比		1.84		2.85 0.00231		
及特性	熱負載 kW		426.4		523. 1		
	熱負載 RT		121.3		148.8		
	量測溫差 ℃		5.850		4.60		
	量測流量Lpm		1044		1629. 94		
	流量 Lpm@溫差5℃		1222. 3			544948	
推估	揚程 m = C × Q ²		31.		14. 55		
溫差	泵浦流功 kW			6. 251	3. 567		
5℃值	耗電 kW	89. 61		11.52	10.16	3.46	114. 75
	系統能效 kW/RT		0. 739	0.095	0.084	0.029	0.946
指標	耗電搬運效率(kW/kW)			37. 0	51.5	151.2	
計算	流功搬運效率(kW/kW)			68. 2	146.6		

表. 3-修回溫差5℃+功率100%

	冰水機	調整回5℃馬達	功率100%				
狀態	設備	耗電功kW	冷凍噸RT	冰水泵hp	冷卻泵hp	冷卻塔hp	總耗電kW
	額定kW,額定RT	86	120				
	標準溫差℃		5			5	
溫差	負載比	104. 2%	101.1%				
5℃	静位差 m, C ₀		0.0			. 60	
數值	管路阻抗係數C ₁		0.0000			000450	
指標	流量 Lpm@溫差5℃@104.2%		1222			9. 54	
特性	揚程 m @溫差5℃@104.2%		31.	28	14	. 55	
	冰機能效 kW/RT		0.739				
	泵浦耗電比			1.84	2.85	0.00231	
	負載比	100.0%					
	冰機耗電 kW @100%	86					
	熱負載RT		116				
溫差	流量 Lpm@溫差5℃@100%		1163		145	4. 85	
5°C	揚程 m@温差5℃@100%			28. 36	12. 12		
負載	泵浦流功kW			5.40	2.88		
100%	熱負載kW		406.			7. 50	
	熱負載RT		115.	•		4. 34	
	耗電 kW		86.00	9. 94	8. 21	3. 36	107.51
	系統能效 kW/RT		0. 739	0.085	0.071	0.029	0. 924
指標	耗電搬運效率(kW/kW)			40.8	61.8	151.2	
計算	流功搬運效率(kW/kW)			75. 2	176.0		

表. 4-更新(冰機+泵浦)+舊(管路+冷卻塔)

		&+新泵浦,舊·			<u>.</u>		
狀態	設備	耗電功	冰水機	冰水泵	冷卻泵	冷卻塔	總耗電
系統 —	靜位差 m, C₀		0.	00	2	. 60	
特性 —	管路阻抗係數C ₁		0.000	02093	0.00	000450	
村庄	冷卻塔耗電比(kW/Lpm)					0.00231	
	離心機,額定kW,額定RT	72	120				
	標準溫差℃		5		5	5	
	負載比	100.0%	100.0%				
	流量 Lpm@溫差5℃@100%			1200.0	15	00.0	
	流量 m3/s@溫差5℃@100%			0.0200	0.0250		
	流量 m3/h@溫差5℃@100%			72.00	90.00		
	揚程 m@温差5℃@100%			30. 15	12. 72		
更新	冰機能效 kW/RT		0.60				
冰機	熱負載 kW		418. 60		523. 25		
泵浦	熱負載 RT		119.06		148.82		
5°C	泵浦流功kW			5. 91	3. 12		
負載	轉速rpm			1750			
100%	比速率Ns, cms			19	41		
	直結式C		128.46	128. 46	128.46		
	歐盟泵浦能效mei=0.4			70.3	79. 2		
	泵浦輸入軸功kW			8. 4	3. 9		
	馬達能效IE3			92. 4	91. 7		
	泵浦耗電比			1.54			
	耗電 kW		72. 0	9. 101	4. 295	3.460	88.85
	系統能效 kW/RT	0	. 600	0.076	0.036	0.029	0.74
指標	耗電搬運效率(kW/kW)			46.0	121.8	151.2	
計算	流功搬運效率(kW/kW)			70.8	167. 7		

表.5-全新系統

	全新系統-新冰	水機+新泵浦,	新管路,亲	新冷卻塔			
狀態	設備	馬達負載	冰水機	一次泵	冷卻泵	冷卻塔	總耗電
	額定kW,額定RT	72	120				
	能效 kW/RT	0. (0.60			0.02	
	標準溫差℃			5	5	5	
額定	流量 Lpm		12	200	1	500	
規格	流量 m3/s		0.	020	0.	025	
观俗	流量 m3/h			000	90	. 000	
	管路揚程m		1	. 6		9	
	静位差 m, CO			0	2	2. 6	
	管路阻抗係數C1			00111	0.0000028		
	熱負載 kW		418.6		523. 25		
	泵浦流功kW		3. 14		2. 21		
L	泵浦轉速rpm			750	1750		
L	比速率Ns,cmm		30). 9	53. 3		
L	直結式C				8. 46		
L	歐盟泵浦能效mei=0.4			6.8		8. 9	
L	泵浦輸入軸功kW			. 1		2. 8	
L	馬達能效IE3		91.	. 7%). 5%	
L	馬達耗電 kW	72		4.5	3. 1	2.4	82.0
L	系統能效 kW/RT		0.60	0.04	0.03	0.020	0.683
L	耗電比(kW/kW或 kW/Lpm)			1.420	1.417	0.00160	
L	Ashrae90.1(系統熱負載)			≤ 0.0582			
	Ashrae90.1(冷媒熱負載)				≤ 0.0465		
指標	耗電搬運效率(kW/kW)			93. 9	167. 3	218. 0	
計算	流功搬運效率(kW/kW)			133. 3	237. 1		

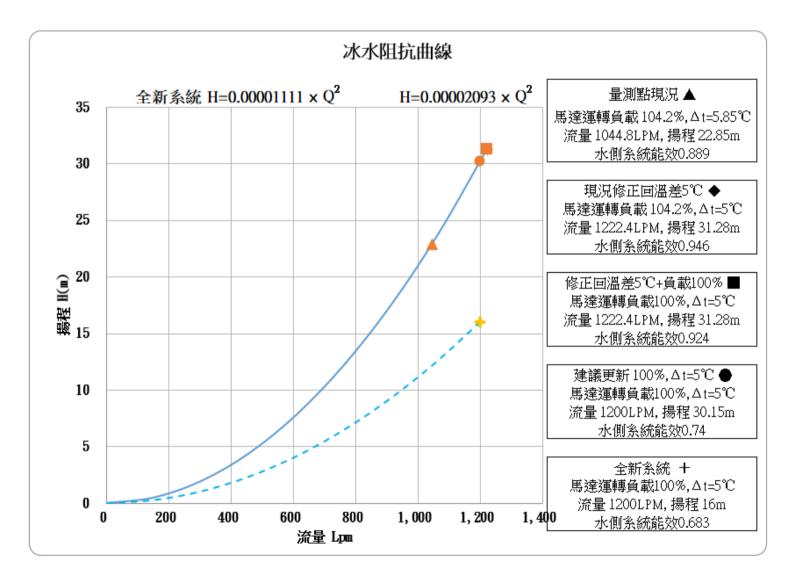
表. 6-IPLV-全新系統

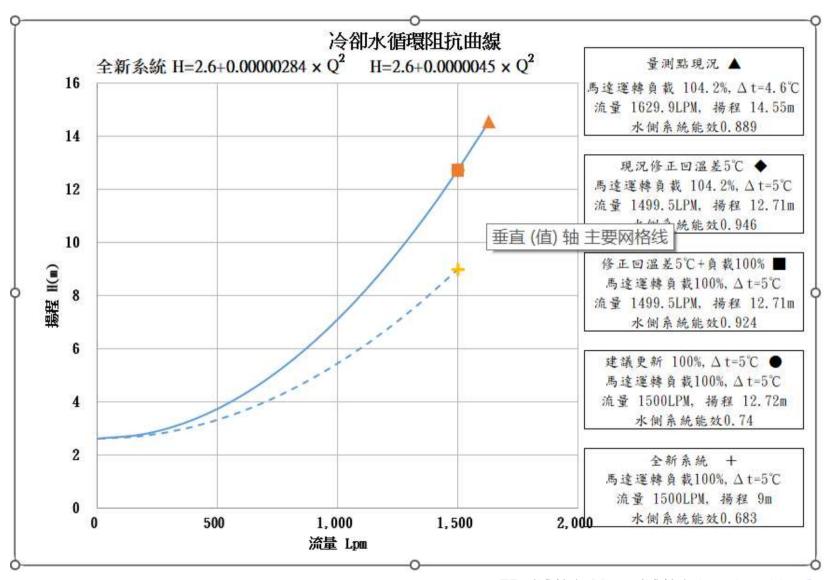
IPLV-全新	系統-新冰	水機+新	泵浦,新管	路,新冷	卻塔	
設備	負載	冰水機	冰水機 冰水泵		冷卻塔	總耗電
靜位差 m, C ₀	2 4t	0.	00	2.	60	
管路阻抗係數C ₁	系統 特性	0.00	00111	0.000	000284	
冷卻塔耗電比(kW/Lpm)	付任				0.00160	
額定kW,額定RT		72.0	120.00			
系統能效 kW/RT		0.6				
耗電比			1.42	1.42	0.00160	
溫差℃		5.	00	5. 00 5. 00		
流量Lpm		120	00.0	1500.0		
熱負載 kW@Δt 5℃	100%	418	8.60	523	3. 25	
揚程m	100%	16	. 00	9.	. 00	
流功 kW		3.	14	2.	207	
耗電 kW		72.00	4.46	3. 128	2.400	81. 98
系統能效 kW/RT		0.600	0.037	0.0261	0.020	0.6832
耗電搬運效率			93. 9	167.3	218.0	
流功搬運效率			133. 3	237. 1		

設備	負載	冰水機	冰水泵	冷卻泵	冷卻塔	總耗電
溫差℃		4. 50		4.50	4.50	
熱負載 RT		G	00.00			
流量 Lpm		10	000.00	125	0.00	
熱負載 kW@Δt 4.5℃		3	13. 95	392	2.44	
揚程m	75%	1	1.11	7.04		
流功 kW] 13/0		1.82	1.440		
耗電比			1.66	1.660	0.00160	
耗電 kW		45.00	3.016	2.390	2.000	52.41
系統能效 kW/RT		0.500 0.0335		0.0266	0.0222	0.5823
耗電搬運效率		104.11		164. 21		
流功搬運效率			172.82	272. 58		

設備	負載	冰水機	冰水泵	冷卻泵	冷卻塔	總耗電
溫差℃		4.00		4.00	4.00	
熱負載 RT		6	80.00			
流量 Lpm		7	50.00	937. 50		
熱負載 kW∆t 4℃		2	09.30	261.63		
揚程m	50%	6. 25		5. 10		
流功 kW	JU/0		0.77	0.782		
耗電比		1.90		1.900	0.00160	
耗電 kW		26. 00 1. 456		1.485	1.500	30.44
系統能效 kW/RT		0. 433 0. 0243		0.0248	0.0167	0.50
耗電搬運效率		143. 73		176.14		
流功搬運效率			273.09	334.67		

設備	負載	冰水機 冰水泵		冷卻泵	冷卻塔	總耗電
溫差℃		3.50		3.50	3.50	
熱負載 RT			30.00			
流量 Lpm		4	428. 57 535. 71			
熱負載 kW∆t 3.5℃		104.65		130.81		
揚程m	25%	2.04		3. 42		
流功 kW	4J/0		0.14	0. 299		
耗電比			2.35	2.350	0.00160	
耗電 kW		15. 00 0. 336		0.703	0.857	16. 90
系統能效 kW/RT		0.500 0.0112		0.0234	0.0095	0.54
耗電搬運效率		311.41		186.02		
流功搬運效率			731.8	437. 2		


IPLV 冰水機能效計算表							
負 載%	100%	75%	50%	25%	IPLV		
時間係數	2.3%	41.5%	46.1%	10.1%	100.0%		
冰機能效 kW/RT	0.600	0.500	0.433	0.500	0.472		


IPLV 系統能效計算表								
負載%	100%	75%	50%	25%	IPLV			
時間係數	2.3%	41.5%	46.1%	10.1%	100.0%			
系統能效 kW/RT	0. 683	0. 582	0. 499	0. 544	0. 542			

IPLV 冰水泵能效計算表							
負 載%	100%	75%	50%	25%	IPLV		
時間係數	2.3%	41.5%	46.1%	10.1%	100.0%		
系統能效 kW/RT	0.037	0.034	0.024	0.011	0.027		

IPLV 冷卻泵能效計算表								
負載%	100%	75%	50%	25%	IPLV			
時間係數	2.3%	41.5%	46.1%	10.1%	100.0%			
系統能效 kW/RT	0.026	0.027	0. 025	0.023	0. 025			

IPLV 冷卻塔能效計算表								
負載%	100%	75%	50%	25%	IPLV			
時間係數	2.3%	41.5%	46.1%	10.1%	100.0%			
系統能效 kW/RT	0.020	0.022	0.017	0.010	0.018			

冰機測試報告(假設值)							
額定	型式	離心機					
規格	冷凍頓RT		12	20			
796/10	耗電功kW		8	6			
	負載率%	100%	75%	50%	25%		
	冷凍頓RT	120.0	90.0	60.0	30.0		
冰機	冷凍頓kW	421.9	316.4	211.0	105.5		
	耗電功kW	72.0	45. 0	26. 0	15. 0		
	能效kW/RT	0.60	0.50	0.43	0.50		
	冰水流量Lpm	1200	1200	1200	1200		
蒸發器	出水溫度℃	7	7	7	7		
然 %	進水溫度℃	12	10.75	9. 5	8. 25		
	溫差℃	5	3. 75	2. 5	1. 25		
	冷卻水流量Lpm	1500	1500	1500	1500		
冷凝器	出水溫度℃	35	28. 75	21.5	20. 25		
	進水溫度℃	30	25	19	19		
	溫差℃	5	3. 75	2. 5	1. 25		

冰水泵耗電比測試報告(假設值)								
C0	0		C1	0.000011				
流量比%	轉速rpm	流量Lpm	揚程III	流功kW	耗電比	耗電功kW		
100.00%	1750	1200.00	16.00	3. 14	1.42	4. 46		
83.33%	1458	999. 96	11.11	1.82	1.66	3. 02		
75.00%	1313	900.00	9.00	1.32	1.7	2. 25		
62.50%	1094	750.00	6. 25	0.77	1.9	1.46		
50.00%	875	600.00	4.00	0.39	2	0.78		
35. 68%	624	428. 16	2.04	0.14	2.35	0.34		
25.00%	438	300.00	1.00	0.05	2.5	0.12		

冷卻水泵耗電比測試報告(假設值)								
C0		2. 6	C1	0.0000284				
流量比%	轉速rpm	流量Lpm	揚程m	流功kW	耗電比	耗電功kW		
100.00%	1750	1500.00	9.00	2. 21	1.417	3. 128		
83. 33%	1458	1249. 95	7.04	1.44	1.660	2.390		
75.00%	1313	1125.00	6. 20	1.14	1.700	1.939		
62.50%	1094	937. 50	5. 10	0.78	1.900	1.485		
50.00%	875	750.00	4. 20	0.52	2.000	1.030		
35. 68%	624	535. 20	3.41	0.30	2.350	0.702		
25.00%	438	375.00	3.00	0.18	2.500	0.460		